import bpy
import mathutils
import math
# 円周の中心座標
center_x = 0
center_y = 0
center_z = 0
# 円周の半径
radius = 3
# 円周に配置する円錐の数
num_cones = 12
# 円錐の底面が遠くなる位置を定義(例えば、X=2, Y=2, Z=2の場合)
target_x = 0
target_y = 0
target_z = 0
# 円周上の点を計算する
theta_values = [2 * math.pi * i / num_cones for i in range(num_cones)]
circle_points = [(center_x + radius * math.cos(theta), center_y + radius * math.sin(theta), center_z) for theta in theta_values]
# 円錐を配置する関数
def place_cone(position, direction):
bpy.ops.mesh.primitive_cone_add(vertices=32, radius1=0.2, depth=3, location=position)
cone = bpy.context.active_object
bpy.context.view_layer.objects.active = cone
# 向きを設定
cone.rotation_euler = direction
# トーラスを描く関数
def draw_torus():
bpy.ops.mesh.primitive_torus_add(location=(center_x, center_y, center_z), align='WORLD', major_radius=radius+0.0, minor_radius=0.1)
# 円錐を配置
for point in circle_points:
# (0, 0, 0)への方向を計算
target_vector = mathutils.Vector((target_x - point[0], target_y - point[1], target_z - point[2]))
direction_rotation = target_vector.to_track_quat('Z', 'Y').to_euler()
# 円錐の配置
place_cone(point, direction_rotation)
# トーラスの描画
draw_torus()
import bpy
import mathutils
import math
# 円周の中心座標
center_x = 0
center_y = 0
center_z = 0
# 円周の半径
radius = 3
# 円周に配置する円錐の数
num_cones = 12
# 円錐の底面が遠くなる位置を定義(例えば、X=2, Y=2, Z=2の場合)
target_x = 0
target_y = 0
target_z = 3
# 円周上の点を計算する
theta_values = [2 * math.pi * i / num_cones for i in range(num_cones)]
circle_points = [(center_x + radius * math.cos(theta), center_y + radius * math.sin(theta), center_z) for theta in theta_values]
# 円錐を配置する関数
def place_cone(position, direction):
bpy.ops.mesh.primitive_cone_add(vertices=32, radius1=0.2, depth=3, location=position)
cone = bpy.context.active_object
bpy.context.view_layer.objects.active = cone
# 向きを設定
cone.rotation_euler = direction
# トーラスを描く関数
def draw_torus():
bpy.ops.mesh.primitive_torus_add(location=(center_x, center_y, center_z), align='WORLD', major_radius=radius+0.0, minor_radius=0.1)
# 円錐を配置
for point in circle_points:
# (0, 0, 0)への方向を計算
target_vector = mathutils.Vector((target_x - point[0], target_y - point[1], target_z - point[2]))
direction_rotation = target_vector.to_track_quat('Z', 'Y').to_euler()
# 円錐の配置
place_cone(point, direction_rotation)
# トーラスの描画
draw_torus()
https://mokuji000zionad.hatenablog.com/